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Abstract

With the growing reliance on visual data, the tradeoff between privacy and utility
has become a major concern. The need for ensuring personal privacy without
sacrificing the value of visual data for machine learning applications has motivated
the development of privacy-preserving methods. In this work, we evaluated the
general framework of using optical and digital elements to protect privacy in
computer vision applications. In particular, a trainable optical filter and a digital
encoder were jointly optimized for privacy and utility objectives. We explore
two ways of parameterizing the optical filter and compare the results with basic
privacy-preserving methods. The method was evaluated on two tasks: image
classification and semantic segmentation. The results demonstrate that it can
preserve task-relevant information without compromising privacy.

1 Introduction

A growing risk to personal privacy has arisen from the pervasive use of cameras, which exposes
people’s identities in both public and private contexts such as biometric identification, surveillance,
and more. Its use has also become more prevalent in the healthcare domain, with application in patient
monitoring [6], surgical skill assessment [15], and systemic disease diagnosis [3]. Meanwhile, the
recent progress of deep learning has increased the need for larger datasets, which usually compromise
sensitive data and personal information.

A challenging tradeoff between privacy and utility has emerged due to the growing reliance on
visual data. On one hand, images provide a rich source for training deep learning models, leading to
valuable applications across numerous fields. On the other hand, malicious actors can exploit this
data to uncover sensitive information. Several methods have been proposed for privacy protection,
including federated learning [4, 14], differential privacy [1, 8], and homomorphic encryption [2].
However, even with advanced data encryption and security methods, the risk of data leakage remains
a concern, primarily because data is captured and often stored in the cloud, which is susceptible to
attacks. Therefore, methods that are secure and protect privacy have become crucial in computer
vision applications. To enable applications that rely on privacy-sensitive data, we investigate the joint
optimization of optical and digital elements to protect privacy.

2 Related Work

In this section, we briefly review related work in three areas: privacy protection using traditional
methods, privacy-preserving deep learning, and privacy protection using optical and digital systems.



2.1 Privacy Protection using Traditional Methods

Traditional methods have primarily addressed this problem by blurring or obfuscating sensitive
information [5, 7, 17]. In [22], the authors assessed two privacy obfuscation methods (blurring and
blocking) and their effectiveness in protecting privacy based on human perception. These methods
are mainly used to distort images using hand-crafted techniques such as blurring or downsampling,
but often result in removing useful features and adversely affecting the performance of downstream
tasks.

2.2 Privacy Protection using Deep Learning

Many recent proposed methods have investigated privacy in deep learning. The work by [12] proposed
an optimization framework that trains a privacy network and an adversarial classifier to privatize the
data. In [10], the authors train an adversarial obfuscator network to remove task-irrelevant image
features to preserve privacy. Similarly, [19] proposed a method that eliminates specific attributes
to prevent identification while preserving task-specific information using an adversarial training
approach. Other methods, such as [13], use inpainting techniques to de-identify faces while keeping
the original data distribution.

2.3 Deep Computational Optics for Privacy Protection

The advancement in deep computational optics has motivated the integration of optical elements into
the deep learning pipeline to protect image privacy. By incorporating an optimizable optical encoder,
several methods, such as [11, 20], have been proposed to learn a privacy-preserving optical filter for
tasks such as pose and depth estimation while degrading personal human attributes.

3 Methods

3.1 Trainable Optical Filter

The training objective is to enhance privacy by preventing sensitive information from being inferred
or recovered from images while preserving their utility for downstream tasks.

3.1.1 Direct PSF

Let the input image be denoted as I ∈ RH×W×C , where H , W , and C represent the height, width,
and channels of the image, respectively. To simulate the physical process of light passing through
an optical system, the input image is convolved with a point spread function (PSF) kernel. In our
Direct PSF approach, we parameterize the PSF as a trainable convolutional layer H ∈ Rh×w×C . The
details of these kernel parameters will be further discussed in the Experimental Evaluation section.

We impose certain constraints on the PSF kernel to account for the physical limitations of the optical
element. Firstly, we optimize the kernel weights with a non-negative constraint. Subsequently, the
weights are normalized to satisfy the following condition:

h∑
i=1

w∑
j=1

Hc(i, j) = 1 (1)

Where c denotes the RGB channels of the image.

The kernel is then convolved as a depthwise convolution with the input image as follows:

I
′

c = Ic ∗Hc, ⇒ I
′

c(x, y) =

h∑
i=1

w∑
j=1

Ic(i, j) ·Hc(x+ i, x+ j), ∀c ∈ C (2)

Where h and w are the height and width of the kernel, and I
′

c is the output of the optical kernel for
the cth channel. The output is then fed into a convolutional neural network (CNN), which acts as
a digital encoder that can effectively learn from the distorted representations of the PSF-convolved
images to perform downstream tasks.
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Figure 1: Overall project workflow.

3.1.2 PSF using Zernike Polynomials

The refractive optical encoder can be parameterized using Zernike polynomials, where the coefficients
of the Zernike basis can be learned to optimize the optical kernel of the lens. Zernike polynomials
describe the wavefront aberration of the lens using a set of orthogonal polynomials [18] as follows:

ϕ(x, y) =

N∑
i=1

aiZi(x, y) (3)

Here, Zi is the ith Zernike polynomial with Noll index i, and ai is the corresponding coefficient.
By expressing the optical kernel as a linear combination of Zernike polynomials, we can learn a set
of coefficients optimized for our objective function, resulting in a smoother kernel for the optical
encoder [11].

3.2 Loss Function

In training the optical kernel, our goal is to learn privacy-utility loss that can be used for downstream
tasks. We define the loss as a combination of the privacy loss and the task loss:

Ltotal = Ltask + λLprivacy (4)

Where λ is a hyperparameter that is chosen based on the application. In the task loss for image
classification, we use the categorical cross-entropy (CE) loss:

LCE = −
∑
i

yi log(ŷi) (5)

Where ŷi is the output of a softmax layer, and yi is the ground truth label. For the segmentation task,
the Dice loss is used as the task loss:

Ldice = 1−
2
∑

i yiŷi∑
i yi +

∑
i ŷi

(6)

For the privacy loss, the objective is to minimize the sensitive information content in the output of
the optical layer, and it is achieved by learning a mapping that distorts the image while preserving
the information relevant for downstream tasks. We define the privacy loss as maximizing the Mean
Squared Error (MSE) between the input image and the output of the PSF layer. From our experiments,
we found that the MSE loss provides a good balance for privacy. A regularization term can be added
to the loss function by computing the Total Variation (TV) over I

′
, which has been shown to enhance

the privacy by reducing high-frequency components in the output image. The TV term penalizes
sharp transitions in the image, thus promoting a more blurred output. The privacy loss is defined as

3



Figure 2: Qualitative comparison between the input image (standard lens) and the output of the
optimized lens.

follows:

Lprivacy = λLMSE + βLTV (7)

= −MSE(I, I
′
) + TV (I

′
) (8)

= − 1

HWC

H∑
h=1

W∑
w=1

C∑
c=1

(Ih,w,c − I ′h,w,c)
2

+
∑
c

∑
h,w

|∆hI
′

h,w,c|+
∑
h,w

|∆wI
′

h,w,c|

 (9)

Where I is the original image, and I
′

is the output of the physical layer.

4 Experimental Evaluation

4.1 Datasets

We trained our models on the Pascal VOC 2012 [9] and used the 20 classes for the classification task.
The Common Objects in Context (COCO) [16] was employed for evaluating the model inversion
attack. The segmentation task was evaluated on [21], which consists of 5678 images and its semantic
binary masks. We have consistently used 0.9/0.1 train/test splits for all the datasets. In addition, the
images were resized to 128x128 in all the experiments to fit the computational resources.

Method SSIM ↓ MS-SSIM ↓ PSNR ↓ Acc (Top-1 %) ↑ Acc (Top-3 %) ↑
Without PSF - - - 93.07 99.451

Blur Kernel(σ = 2) 0.5742 0.8923 21.5892 89.95 94.63
Blur Kernel(σ = 5) 0.3927 0.7062 18.8584 74.78 91.07
Gaussian Noise (σ = 0.1) 0.2913 0.7563 15.0149 82.06 92.89
Downsample (x6) 0.4756 0.7814 19.3893 89.60 94.97

Direct PSF 0.4235 0.7414 17.5525 92.80 95.41
Zernike PSF 0.3446 0.6515 16.0731 93.41 95.84
Zernike PSF (TV) 0.4248 0.7726 18.3925 91.24 95.67

Table 1: Evaluation results of the classification task, benchmarked against non-private standard lens
and different naive privacy-preserving methods.

4.2 Network and Training

We used Tensorflow for conducting our experiments. In the classification task, we trained a Convolu-
tional Neural Network (CNN) consisting of three convolutional layers and two dense layers with a
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Figure 3: Tradeoff between privacy and utility on three evaluation metrics using four kernel sizes.

softmax activation function. For the direct PSF approach, we parameterized the PSF as a trainable
convolutional kernel, which was incorporated as the first layer in the CNN. We assigned a kernel size
of 22x22 and initialized the weights from a Gaussian distribution. For the Zernike PSF approach,
we used the first 6 Zernike polynomials to parameterize the optical kernel and have set the Zernike
modes radius to 5.

Consistent hyperparameters were used across all experiments to ensure a fair comparison between
the various methods. The model was trained for 30 epochs using the Adam optimizer, a batch size of
32, and a learning rate of 0.001. The learning rate was updated using an exponential decay schedule,
with a decay factor of 0.1 applied after 20 and 25 epochs.

For the segmentation task, we adopted a U-Net architecture with a MobileNetV2 encoder pretrained
on ImageNet. The decoder consisted of four upsampling blocks, with each block including a
transposed convolution layer, a batch normalization layer, and a ReLU activation. The images and
masks were augmented using random horizontal flips, channel shuffling, and rotation, resulting in a
total of about 30k images. The model was trained for two epochs using the Adam optimizer, with a
batch size of 2 and a learning rate of 0.001.

4.3 Privacy and Task Metrics

To evaluate the performance of the used methods, we employed three perceptual metrics as a measure
of privacy, in addition to the classification accuracy. The Structural Similarity Index (SSIM), its
variant, the Multi-Scale Structural Similarity Index (MS-SSIM), and the Peak Signal-to-Noise Ratio
(PSNR) were used to provide a quantitative measure of the similarity between the original image and
the image after applying the PSF. The classification task was evaluated based on the Top-1 and Top-3
accuracy, while the Intersection over Union (IoU) was used to evaluate the segmentation task.

(a) Workflow of reconstructing the image from the PSF-
convolved image. (b) Samples of the reconstructed images.

Figure 4: Privacy inversion attack.
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Figure 5: Qualitative comparison of the predicted masks using the baseline and the PSF approach.

Model (Configuration) SSIM ↓ MS-SSIM ↓ PSNR ↓ IoU ↑
UNet - - - 0.7787

UNet (Zernike PSF) 0.2303 0.1105 10.0892 0.6296

Table 2: Evaluation results of the segmentation task.

5 Results and Discussion

5.1 Image Classification

Figure 2 shows few samples of the convolved images using different PSFs. Compared to the Zernike
PSF, the TV regularized Zernike PSF resulted in a more blurred image. Table 1 shows the results of
the image classification task, where it is benchmarked against different handcrafted augmentation
methods simulating simple privacy-preserving strategies. While the basic methods such as blurring
and downsampling can produce images with high privacy according to the SSIM, MS-SSIM, and
PSNR measures, their performance in the downstream task is noticeably affected. It can be shown
that the optimized PSF methods produce a comparable or better privacy level while still maintaining
a close classification accuracy to the baseline approach. This indicates that the PSF approach retained
the task-relevant information essential for performing the downstream task while optimizing for the
privacy loss.

Figure 3 demonstrates the privacy-utility trade-off for four different kernel sizes on the perceptual
metrics. We can observe that as the kernel size increases, the degree of image distortion becomes
more significant, which leads to better privacy protection. However, the classification performance
also decreases as a result of the increasing distortion. Therefore, the choice of kernel size is important
in determining the degree of sensitive information in the image without compromising the ability of
the model to effectively perform the task.

Another experiment was performed to assess the robustness of the method against the privacy
inversion attack. In this experiment, assuming an adversary has black-box access to the optimized
PSF, we trained a UNet model to deblur the convolved images. In Figure 4a, we used an optimized
PSF to simulate a new dataset of convolved images using the COCO dataset. We then trained a UNet
model to deblur the images to recover the original images. Visual inspection of the results in Figure
4b shows that the attempt to recover the original images was unsuccessful.

5.2 Semantic Segmentation

Comparable results were obtained for the semantic segmentation task. In table 2, when comparing
the results of the trained U-Net model with the designed PSF to the baseline U-Net model, we find
that the SSIM, MS-SSIM, and PSNR are remarkably lower. However, the reported Intersection over
Union (IoU) metric shows a slight decrease with the PSF approach. Considering that the model was
trained for two epochs, we expect better performance with more training and hyperparameter tuning.
Figure 5 offers a qualitative comparison between the baseline and the Zernike PSF approach. The
PSF-convolved images show a significant distortion while preserving the output semantic edges,
which is essential for performing segmentation tasks.
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